Similar Posts

  • |

    How Blockchain Technology Can Benefit Public Governance

    A blockchain is simply a digital record of transactions that is replicated and distributed throughout the blockchain’s complete network of computer systems. Each block on the chain is made up of a number of transactions, and whenever a new transaction occurs on the blockchain, a record of that transaction is added to the ledger of…

  • |

    5 Requirements to Creating a Risk Register

    Cyber attacks and internal and external threats are common issues affecting small and grand enterprises. For this reason, most have come up with ways to avert such risks, and a risk register is pretty common. It is a critical component of any organization and is an excellent way to mitigate potential delays and risks in…

  • | | |

    How To Use ChatGPT Show Me Plugin To Create Realtime Diagrams? | A Complete Guideline

    In today’s world where there’s so much data available but people don’t have that much time to read, charts and diagrams can be a really effective tool for communication. Since they can carry out large amounts of information in very little space, they are a great representation tool. So, what if you can integrate your…

  • |

    What is Deepfake | Know All about this Technology

    We all have seen Mark Zuckerberg screaming about having total control of million people or our favorite movie actor talking garbage. So, we have witnessed deepfakes. In this century, it is a time of Photoshop. If you want to star yourself in your favorite movie or play any sport with a famous athlete, it’s time…

  • Why Your ML Pipeline Is Breaking in Production And How to Fix It

    Machine learning prototypes like a dream and deploys like a nightmare If we ask any team that’s scaled an ML project beyond a notebook, and they’ll tell you: getting a model to work is the easy part. Keeping it working—correctly, reliably, and ethically—in production? That’s where the real battle begins. Let’s talk about the cracks that appear when ML hits the real world, and what seasoned teams do to patch them before they widen. The Most Common Failure Points in Production ML 1. Data Drift: Your Model Is Learning from Yesterday’s World You trained your model on data from Q2. It’s now Q4, and user behavior has shifted, supply chains have rerouted, or the fraud patterns have evolved. Meanwhile, your model is confidently making predictions based on a world that no longer exists. How to Fix It: 2. Silent Failures: No One Knows It’s Broken Until It’s Too Late Your model outputs are being used downstream in production systems. The problem? It’s spitting out garbage—but it’s well-formatted, looks fine, and no one’s checking. How to Fix It: 3. Feature Leakage & Inconsistency: Your Training and Production Logic Don’t Match In training, you cleaned, transformed, and imputed data in a controlled environment. In production, the feature pipeline was reimplemented (or worse, manually replicated), and now your model is operating on a different reality. How to Fix It: 4. Retraining Without a Strategy: You’re Flying Blind You retrain your model weekly. Cool. Why? Is it helping? Are you tracking whether performance is improving—or quietly regressing? How to Fix It: 5. Lack of Observability: You’re Operating Without a Dashboard No logs. No metrics. No dashboards. If something goes wrong, it’s a post-mortem and a prayer. Without visibility, you’re not in control—you’re guessing. How to Fix It: 6. Ownership Gaps: Who Owns the Model After Launch? The data scientist shipped the model. The ML engineer deployed it. The product manager doesn’t know if it’s still performing. Sound familiar? How to Fix It: ✅ The Real Fix ML in production isn’t a project—it’s a system. And like any living system, it needs care, monitoring, and adaptation. What the best teams do: Closing Remarks Most ML failures in production aren’t algorithmic—they’re operational. The tech isn’t broken. The system around it is. If you’re serious about ML, stop treating models as one-off experiments. Start thinking like a systems engineer, not just a data scientist. Because in production, the model is only 10% of the problem—and 90% of the responsibility. Table Of Contents The Most Common Failure Points in Production ML ✅ The Real Fix Closing Remarks Subscribe to our newsletter & plug into the world of technology…

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.